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1 Introduction

Traditional concurrent games on graphs [1] involve a fixed number of players, who take decisions
simultaneously, determining the next state of the game. In our work [2], we introduce a parameterized
variant of concurrent games on graphs, where the parameter is precisely the number of players.
Parameterized concurrent games are described by finite graphs, in which the transitions bear regular
languages to describe the possible move combinations that lead from one vertex to another.

As for traditional concurrent games, one can consider natural questions such as, for instance,
the distributed synthesis problem, or the existence and computation of Nash equilibria etc. To
start with, we consider a simpler decision problem: the first player, called Eve, is distinguished, and
the question is whether she can ensure a reachability objective against the coalition of the other
players, not knowing a priori the number of her opponents. She therefore must play uniformly,
whatever the number of opponents she has.

2 Game setting

We first introduce a simpler setting, where we assume that the languages on transitions of the arena
are particularly simple: they only constrain the number of opponents Eve has. We later show this
simpler setting is not restrictive for the decision problem with arbitrary regular languages.

Definition 1. A parameterized arena is a tuple A = 〈V,Σ,∆〉 where V is a finite set of vertices;
Σ is a finite set of actions; and ∆ : V × Σ× N>0 → 2V is the transition function.

The arena is deterministic if for every v ∈ V , and every pair (a, k) ∈ Σ× N>0, there is at most
one vertex v′ ∈ V such that v′ ∈ ∆(v, a, k). Action a ∈ Σ is enabled at vertex v if there exists
k ∈ N>0 such that ∆(v, a, k) 6= ∅. The arena is assumed to be complete for enabled actions: for
every v ∈ V , if a is enabled at v, then for all k ∈ N>0, ∆(v, a, k) 6= ∅. This assumption is natural:
Eve does not know how many opponents she has, and the successor vertex must exist whatever
that number is. Given a predicate P ⊆ N>0, ∆(v, a, P ) is a shorthand for

⋃
k∈P ∆(v, a, k).

Further, for any v, v′ ∈ V and a ∈ Σ, we introduce the following notation to represent the set of
number of opponents that can lead from v to v′ under action a of Eve: ∇(v, a, v′) = {k ∈ N>0 |
v′ ∈ ∆(v, a, k)}. Finally, we write E = {(v, a, v′) | ∃k ∈ N>0, v

′ ∈ ∆(v, a, k)} for the set of edges of
the arena.

Let k ∈ N>0. A k-history, for a coalition composed of k opponents of Eve, is a finite sequence
v0a0 · · · vi ∈ (V · Σ)∗ · V such that for every j < i, vj+1 ∈ ∆(vj , aj , k) (or equivalently k ∈⋂

j<i∇(vj , aj , vj+1)). A history in A is a k-history for some k ∈ N>0. We note Hist(k) (resp. Hist)
for the set of k-histories (resp. histories) in G. Similar notions of a k-play and a play are defined
for infinite sequences.

Definition 2. A strategy for Eve from v in A is a mapping σ : Hist→ Σ that associates to every
history hv′ ∈ Hist an action σ(hv′) which is enabled at v′. Further, σ is memoryless whenever for
every hv′, h′v′ ∈ Hist, σ(hv′) = σ(h′v′).

A strategy for Eve is applied with no prior information on the number of her opponents. Given a
strategy σ, an initial vertex v and k ∈ N>0 a number of opponents, we define the outcome Out(σ, v, k)
as the set of plays that σ induces from v when Eve has exactly k opponents. Formally, Out(σ, v, k)
is the set of all k-plays ρ = v0a0v1a1v2 · · · such that v = v0, and for all i ≥ 0, σ(v0a0 · · · vi) = ai
and vi+1 ∈ ∆(vi, ai, k). The completeness assumption ensures that the set Out(σ, v, k) is not empty.
Finally, Out(σ) is the set of all possible plays induced by σ from v: Out(σ, v) =

⋃
k≥1 Out(σ, v, k).

Given an arena A = 〈V,Σ,∆〉, a target vertex t ∈ V defines a reachability game G = (A, t) for
Eve. A strategy σ for Eve from v in the reachability game G = (A, t) is winning if all plays in
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Out(σ, v) eventually reach t. If there exists a winning strategy from v, then we say that v belongs
to the winning region of Eve.
The purpose of our work was to establish the complexity of the following decision problem:

Parameterized reachability game problem
Input: A parameterized reachability game G = (A, t) and an initial vertex v.
Question: Does Eve have a winning strategy from v in G?

For algorithmic reasons, we assume the transition function ∆ of A can be described in a finite
way. More precisely, the sets ∇(v, a, v′) for v, v′ ∈ V and a ∈ Σ should be simple enough.

We first consider constraints described by closed intervals or finite unions of closed intervals.
As a complexity parameter, we use #endpointsA, the number of endpoints used in constraints in
A. All the complexities will be functions of this parameter, independently of the precise values of
the endpoints. More generally, we also consider semilinear predicates over N. W.l.o.g. we assume
semilinear sets are given as finite unions of ultimately periodic sets of integers. A set S ⊆ N is
ultimately periodic if there exist a threshold t ∈ N and a period p ∈ N such that for all a, b ∈ N
with a, b ≥ t and a ≡ b mod p, we have a ∈ S iff b ∈ S. For complexity issues, all constants are
assumed to be represented in binary. In that context, as a complexity parameter, we use #predA,
the number of predicates used on edges of A.

3 Complexity results

From a parameterized reachability game, we construct a standard two-player turn-based game, called
the knowledge game, which precisely captures the partial-information of Eve in the parameterized
game. We will show that existence of a winning strategy for Eve in the parameterized game reduces
to the resolution of the knowledge game. However the knowledge game can be a priori exponential
in the size of the original arena, and this exponential blowup is unavoidable. Yet, later we will
show the parameterized reachability game problem can be solved in polynomial space in the most
general case, when constraints are semilinear predicates; moreover for simpler constraints, we show
the problem to be complete for smaller complexity classes.

The knowledge game. From a parameterized reachability game, we construct a turn-based
two-player knowledge game as follows.

Definition 3. Let G = (A, t) be a parameterized game, with A = 〈V,Σ,∆〉. The knowledge game
associated with G is the two-player turn-based reachability game KG = (VE ∪ VA,∆K, F ), between
Eve and Adam, such that VE ⊆ V × 2N>0 and VA ⊆ VE ×Σ are Eve and Adam vertices, respectively;
∆K ⊆ (VE × VA) ∪ (VA × VE) is the edge relation; and F = VE ∩ {(t,K) | K ⊆ N>0} is the set of
target vertices. They are defined inductively by

• {(v,N>0) | v ∈ V } ⊆ VE;

• ∀(v,K) ∈ VE, ∀a ∈ Σ enabled at v, (v,K, a) ∈ VA and
(
(v,K), (v,K, a)

)
∈ ∆K;

• ∀(v,K, a) ∈ VA, ∀v′ ∈ V such that K ∩ ∇(v, a, v′) 6= ∅, (v′,K ∩ ∇(v, a, v′)) ∈ VE and(
(v,K, a), (v′,K ∩∇(v, a, v′))

)
∈ ∆K;

A strategy for Eve in KG is a function λ : (VE ·VA)∗ ·VE → VA compatible with ∆K. We borrow
standard notions of outcomes and winning strategies from the literature.

It is not hard to see that the game KG is finite. Indeed, one can show by induction that every
Eve’s vertex (v,K) (hence every Adam’s vertex (v,K, a)) is such that K is an intersection of finitely
many sets of the form ∇(v′, a, v′′) or N>0.
One can show the correctness of the knowledge game construction:

Theorem 4 ([2]). Eve has a winning strategy σ from v0 in G if and only if she has a winning
strategy λ from (v0,N>0) in KG.

The following lemma states how the size of the knowledge game depends on the input arena:

Lemma 5. For G = (A, t) a parameterized game with A = 〈V,Σ,∆〉, the size of the associated
knowledge game KG is polynomial in |V |, |Σ|, and (1) exponential in #predA, for constraints defined
by semilinear predicates; (2) exponential in #endpointsA, for constraints defined by finite unions of
intervals; and (3) polynomial in #endpointsA, for constraints defined as intervals. Furthermore,
the exponential blowup is unavoidable in the two first cases.
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We then study upper and lower bounds for the parameterized reachability game problem
depending on the presentation of the constraints in the input.

Theorem 6 ([2]). The complexity of the parameterized reachability game problem is stated in
Table 1.

Deterministic arenas Non-deterministic arenas

C
on

st
ra

in
ts Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets PSPACE-complete

Table 1: Complexity of the parameterized reachability game problem.

These complexities, when the constraints are given as (finite unions of) intervals, are in
#endpointsA used in the constraints but independent of values of the endpoints. On the other hand,
when constraints are given as semilinear sets, the complexity depends on #predA as well as the size
of the encodings of the semilinear sets.

4 Discussion: Beyond the number of players

Our model of parameterized game defined in Section 2, with constraints on the number of opponents
for Eve, is actually a simplification of a general concurrent game model, where the transitions bear
regular languages to describe the possible move combinations that lead from one vertex to another,
which was mentioned in the introduction. Here we discuss that the latter in fact reduces to the
simpler one.

Definition 7. A language-based parameterized arena is a tuple AL = 〈V,Σ,∆L〉 where V is a
finite set of vertices; Σ is a finite set of actions; and ∆L : V × Σ≥2 → 2V is the transition function.

The fact that Eve has at least one opponent explains the term Σ≥2 in the transition function.

We assume that for every (v, v′) ∈ V 2, ∇L(v, v
′)

def
= {w ∈ Σ≥2 | v′ ∈ ∆L(v, w)} is regular.

The game is then played as follows, when k+1 is the number of players, called Eve, Adam1,
. . . , Adamk: from vertex v, each of the players select simultaneously an action in Σ; concatenating
all the letters (Eve first, and then all Adams’ actions), it forms a word w; the next vertex of the
game is then one of the vertices v′ in ∆L(v, w); the game then resumes from vertex v′. Strategies
for Eve, and outcomes can be defined similarly to that of parameterized arenas in Section 2. The
language-based parameterized game problem is then to decide whether Eve has a strategy that is
winning against any number of opponents.

Language-based parameterized arenas generalize parameterized arenas: one can for instance
replace rules of the form v′ ∈ ∆(v, a, k) in a parameterized arena by v′ ∈ ∆L(v, aΣk) to construct a
language-based parameterized arena, preserving the winning region for Eve. For our problem of
existence of a winning strategy for Eve, the reduction in the other direction also holds:

Proposition 8 ([2]). The language-based parameterized reachability game problem reduces in
polynomial time to the parameterized reachability game (with semilinear predicates).

Thanks to Proposition 8, and using results from Theorem 6, we obtain the precise complexity
of the language-based parameterized reachability game problem:

Theorem 9 ([2]). The language-based parameterized reachability game problem is PSPACE-complete.
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