Concurrent Parameterized Games

Anirban Majumdar
Joint work with Nathalie Bertrand and Patricia Bouyer

LSV, ENS Paris-Saclay, France
Inria Rennes, France

MOVEP 2020
Turn based 2-player Games

- $P_1 (\bigcirc)$ vs $P_2 (\square)$
Turn based 2-player Games

- $P_1 (\bigcirc)$ vs $P_2 (\square)$
Turn based 2-player Games

- $P_1 (\bigcirc)$ vs $P_2 (\square)$
Turn based 2-player Games

- $P_1 (\bigcirc) \text{ vs } P_2 (\Box)$
Turn based 2-player Games

- $P_1 (\bigcirc)$ vs $P_2 (\square)$
Turn based 2-player Games

- $P_1 (\bigcirc)$ vs $P_2 (\square)$
Turn based 2-player Games

- P_1 (○) vs P_2 (□)
- Win = A set of plays
Turn based 2-player Games

• $P_1 (\bigcirc)$ vs $P_2 (\Box)$
• Win = A set of plays
• Positional strategies for Reachability, Safety…
Concurrent 2-player Games

[Alfaro, Henzinger, Kupferman '07]

- Actions: $\Sigma = \{a, b\}$
- P_1, P_2 - choose action *simultaneously*
- Next vertex determined by the chosen actions
Concurrent 2-player Games

[Alfaro, Henzinger, Kupferman ’07]

- Actions: $\Sigma = \{a, b\}$
- P_1, P_2 - choose action simultaneously
- Next vertex determined by the chosen actions
- Eg: P_1 chooses ‘a’; P_2 chooses ‘b’
The game goes from v_0 to v_2
Concurrent 2-player Games

[Alfaro, Henzinger, Kupferman ’07]

- Actions: $\Sigma = \{a, b\}$
- P_1, P_2 - choose action simultaneously
- Next vertex determined by the chosen actions
- Eg: P_1 chooses ‘a’; P_2 chooses ‘b’
 The game goes from v_0 to v_2
Concurrent 2-player Games

[Alfaro, Henzinger, Kupferman ’07]

- choose action simultaneously
- Actions: \(\Sigma = \{a, b\}\)
- \(P_1, P_2\) - choose action simultaneously
- Next vertex determined by the chosen actions
- Eg: \(P_1\) chooses ‘\(a\)’; \(P_2\) chooses ‘\(b\)’

The game goes from \(v_0\) to \(v_2\)
Concurrent k-player Games

- Actions: $\Sigma = \{a, b\}$
- P_1, \ldots, P_k - choose action simultaneously
Concurrent k-player Games

- Actions: $\Sigma = \{a, b\}$
- P_1, \ldots, P_k - choose action simultaneously
- Eg: P_1 chooses 'a'; P_2, \ldots, P_k all choose 'b'

The game goes from v_0 to v_2
Concurrent parameterized Games

- Actions: $\Sigma = \{a, b\}$
- P_1 vs Rest of world (Env.)
- Unknown (parameter) but fixed number of players
Concurrent parameterized Games

- Actions: $\Sigma = \{a, b\}$
- P_1 vs Rest of world (Env.)
- Unknown (parameter) but fixed number of players

- L_1, L_2, L_3 Regular
- P_1 needs to win against all choices of others
How to play Parameterized Games
1. Env chooses k: #players (unknown to P_1)
1. Env chooses k: #players (unknown to P_1)
2. P_1 chooses an action ‘a_1’
 Others choose actions ‘a_2, \ldots, a_k’
 This forms a word $a_1a_2\ldots a_k$
1. Env chooses k: #players (unknown to P_1)
2. P_1 chooses an action ‘a_1’
 Others choose actions ‘a_2, \ldots, a_k’
 This forms a word $a_1 a_2 \ldots a_k$
3. Env chooses v_i s.t. $a_1 a_2 \ldots a_k \in L_i$
How to play Parameterized Games

1. Env chooses k: #players (unknown to P_1)
2. P_1 chooses an action ‘a_1’
 Others choose actions ‘a_2, \ldots, a_k’
 This forms a word $a_1a_2\ldots a_k$
3. Env chooses v_i s.t. $a_1a_2\ldots a_k \in L_i$
4. Game proceeds to v_i and goto step 2
1. Env chooses \(k \): #players (unknown to \(P_1 \))

2. \(P_1 \) chooses an action ‘\(a_1 \)’
 Others choose actions ‘\(a_2, \ldots, a_k \)’
 This forms a word \(a_1a_2\ldots a_k \)

3. Env chooses \(v_i \) s.t. \(a_1a_2\ldots a_k \in L_i \)

4. Game proceeds to \(v_i \) and goto step 2

\(P_1 \) has to win against all choices of others, for all \(k \)
• **Question:** Do positional strategies suffice?

![Illustrative example diagram]

• **Objective of** P_1: Reach \bigcirc
Illustrative example

- **Question**: Do positional strategies suffice? ❌

- Objective of P_1: Reach ⬤
- P_1 has winning strategy
- No positional winning strategy
Problem Simplification

- **Goal:** Solve Parameterized game for P_1

- **Observation:** Only number of opponents matter (not their choices)
Problem Simplification

- **Goal**: Solve Parameterized game for P_1

- **Observation**: Only number of opponents matter (not their choices)
Problem Simplification

- **Goal**: Solve Parameterized game for P_1

- **Observation**: Only number of opponents matter for general case also
Problem Simplification

- **Goal**: Solve Parameterized game for P_1

- **Observation**: Only number of opponents matter for general case also
Problem Simplification

- **Goal**: Solve Parameterized game for P_1

- **Observation**: Only number of opponents matter for general case also
 - L regular \Rightarrow set of lengths of words ($|L|$) is semilinear
Problem Simplification

- **Goal**: Solve Parameterized game for P_1

- **Observation**: Only number of opponents matter for general case also

- L regular \Rightarrow set of lengths of words ($|L|$) is semilinear

- Different cases on the representation of $|L|$
 - Intervals
 - Unions of intervals
 - Semilinear sets
How to play the simplified game
How to play the simplified game

1. Env chooses k: #opponents (unknown to P_1)
How to play the simplified game

1. Env chooses k: #opponents (unknown to P_1)

2. P_1 chooses an action ‘σ’
How to play the simplified game

1. Env chooses k: #opponents (unknown to P_1)
2. P_1 chooses an action ‘σ’
3. Env chooses v_i s.t. $k \in S_i^\sigma$
How to play the simplified game

1. Env chooses k: # opponents (unknown to P_1)
2. P_1 chooses an action ‘σ’
3. Env chooses v_i s.t. $k \in S_i^\sigma$
4. Game proceeds to v_i and goto step 2
How to play the simplified game

1. Env chooses k: #opponents (unknown to P_1)
2. P_1 chooses an action ' σ'
3. Env chooses v_i s.t. $k \in S_i^\sigma$
4. Game proceeds to v_i and goto step 2

P_1 has to win for all k
Resolution of the game

- Construction of Knowledge game (\mathcal{K})

\[
\begin{align*}
\begin{array}{c}
v_1 \\
\end{array}
& \xrightarrow{a, [1]} \\
\begin{array}{c}
v_2 \\
\end{array}
\begin{array}{c}
v_3 \\
\end{array}
& \xrightarrow{a, [2, \infty)}
\end{align*}
\]
Resolution of the game

- Construction of Knowledge game (\mathcal{K})
Resolution of the game

- Construction of Knowledge game (\mathcal{K})
Illustrative example

\[v_1, [1, \infty) \]

\[v_2, [1] \]

\[v_3, [2, \infty) \]

\[v_4, [1] \]

\[v_5, [2, \infty) \]

\[v_6, [2, \infty) \]
Resolution of the game

- Construction of Knowledge game (\mathcal{K})

P_1 has winning strategy \iff \bigcirc has winning strategy
Resolution of the game

- Construction of Knowledge game (\mathcal{K})

- \mathcal{K} is finite: only intersections
- Solving Parameterized game is decidable
Resolution of the game

- Construction of **Knowledge game** (\mathcal{K})

P_1 has winning strategy \iff \bigcirc has winning strategy

- \mathcal{K} is finite: only intersections
- Solving Parameterized game is **decidable**
- **Complexity?**
• **Complexity results:**

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Non-deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals</td>
<td>PTIME-complete</td>
<td></td>
</tr>
<tr>
<td>Unions of intervals</td>
<td>NP-complete</td>
<td>PSPACE-complete</td>
</tr>
<tr>
<td>Semilinear sets</td>
<td></td>
<td>PSPACE-complete</td>
</tr>
</tbody>
</table>

• Complexities are -
 - in #endpoints for (unions of) intervals
 - in #semilinear_set for semilinear sets
Intervals

- Size of \mathcal{K}: quadratic in #endpoints
- Turn-based game solvable in Polynomial time (reachability)
 - Parameterized game solvable in Polynomial time (reachability)
Semilinear sets

- Size of \mathcal{K}: exponential in $\#\text{semilinear_sets}$
- Polynomial-space algorithm (next...)
Semilinear Sets - PSPACE upper bound

- Solving Reachability

Step 1. Construct $\mathcal{H}[v, K]$ - restriction of \mathcal{H}
Semilinear Sets - PSPACE upper bound

- Solving Reachability

Step 1. Construct $\mathcal{H}[v, K]$ - restriction of \mathcal{H}
Semilinear Sets - PSPACE upper bound

- Solving Reachability

Step 1. Construct $\mathcal{H}[v, K]$ - restriction of \mathcal{H}

- Stop at any $K' \subsetneq K$
• Solving Reachability

Step 1. Construct \(\mathcal{H}[v, K] \) - restriction of \(\mathcal{H} \)

• Stop at any \(K' \not\subset K \)

• Polynomial size game : solvable in Polynomial time
Semilinear Sets - PSPACE upper bound

\[\mathcal{K}[v_0, \mathbb{N}] \]

\[\mathcal{K}[v_1, K_1] \]

\[\mathcal{K}[v_2, K_2] \]

\[\mathcal{K}[v_3, K_3] \]
Step 2. Apply DFS - reuse "space"

$v_0, K_0, ?$
Semilinear Sets - PSPACE upper bound

Step 2. Apply DFS - reuse "space"

\[\mathcal{K}[v_0, K_0] \]
Step 2. Apply DFS - reuse "space"

Semilinear Sets - PSPACE upper bound

$\mathcal{K}[v_0, K_0]$

$\mathcal{K}[v_3, K_3]$

poly
Semilinear Sets - PSPACE upper bound

Step 2. Apply DFS - reuse “space”

\[K[v_0, K] \]
\[K[v_3, K] \]
\[K[v_6, K] \]
Step 2. Apply DFS - reuse "space"

\[\mathcal{K}[v_0, K_0] \]

\[\mathcal{K}[v_3, K_3] \]

\[\mathcal{K}[v_6, K_6] \]
Semilinear Sets - PSPACE upper bound

Step 2. Apply DFS - reuse “space"

- **tag**\((v, K) = \text{Win}; \) if \(v\) is target or \(P_1\) has a strategy to reach 'Win' in \(\mathcal{K}[v, K]\)

- tag once computed, the subtree is "forgotten"
Step 2. Apply DFS - reuse “space"

- tag(v,K) = Win; if either, v is target
- or, P₁ has a strategy to reach 'Win' in $\mathcal{K}[v, K]$

- tag once computed, the subtree is "forgotten"
Semilinear Sets - PSPACE upper bound

Step 2. Apply DFS - reuse "space"

- \(\mathcal{H}[v_0, K_0] \)
- \(\mathcal{H}[v_3, K_3] \)

- \(\text{tag}(v, K) = \text{Win}; \text{ if } \{ \text{either, } v \text{ is target} \)
 \text{or, } P_1 \text{ has a strategy to reach 'Win' in } \mathcal{H}[v, K] \)

- \(\text{tag once computed, the subtree is "forgotten"} \)
Semilinear Sets - PSPACE upper bound

Step 2. Apply DFS - reuse "space"

- \(\text{tag}(v, K) = \text{Win}; \) if \(v \) is target
 - or, \(P_1 \) has a strategy to reach 'Win' in \(\mathcal{K}[v, K] \)
- \(\text{tag} \) once computed, the subtree is "forgotten"
Unions of intervals, Deterministic - NP upper bound

- Non-deterministically guess a strategy
- Size polynomial (in #endpoints)
Conclusion

Parameterized Concurrent Games

- Generalisation of 2-player concurrent games
- P_1 against the world
- Strategies need memory
- Knowledge game construction
- PSPACE-completeness in general case
- Better bounds for simpler cases
Future

Parameterized Synthesis

- Coalition game
- Number of players unknown
- Players know their "id"
Future

Parameterized Synthesis

- Coalition game
- Number of players unknown
- Players know their "id"
- Collective winning strategy
- Player ‘i’ plays ‘b’ at i-th round, ‘a’ otherwise
Parameterized Synthesis

- Coalition game
- Number of players unknown
- Players know their “id”
- Collective winning strategy
- Player ‘i’ plays ‘b’ at i-th round, ‘a’ otherwise

Thank You