Local first order logic for distributed algorithms

MOVEP 2020

Olivier Stietel
Joint with B. Bollig and A. Sangnier
This Talk:

- Consensus problem
- Local first order logique
- Results
The Consensus Problem
The Consensus Problem

Input
The Consensus Problem

Input

Output
The Consensus Problem

Input

Output

Crashed
Expressiveness: IO-FO

Models | Syntax
Expressiveness: IO-FO

Models

\[\mathcal{A} = (A, \ell, I, O) \]

Where

\(A \) is a finite set

\(\ell : A \rightarrow \Sigma \) Labeling

\(I : A \rightarrow \mathbb{N} \) Data values at input

\(O : A \rightarrow \mathbb{N} \) Data values at output

Syntax
Expressiveness: IO-FO

Models
\[\mathcal{A} = (A, \ell, I, O) \]

Where
- \(A \) is a finite set
- \(\ell : A \rightarrow \Sigma \) Labeling
- \(I : A \rightarrow \mathbb{N} \) Data values at input
- \(O : A \rightarrow \mathbb{N} \) Data values at output

Syntax
\[\varphi ::= x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi \mid a(x) \]
Expressiveness: IO-FO

Models
\[\mathcal{A} = (A, \ell, I, O) \]
Where
- \(A \) is a finite set
- \(\ell : A \to \Sigma \) Labeling
- \(I : A \to \mathbb{N} \) Data values at input
- \(O : A \to \mathbb{N} \) Data values at output

Syntax
\[\varphi ::= x = y \mid \varphi \lor \varphi \]
\[\mid \neg \varphi \mid \exists x. \varphi \]
\[\mid a(x) \mid I \sim O \]
Expressiveness: IO-FO

Models
\[\mathcal{A} = (A, \ell, I, O) \]
Where
- \(A \) is a finite set
- \(\ell : A \to \Sigma \) Labeling
- \(I : A \to \mathbb{N} \) Data values at input
- \(O : A \to \mathbb{N} \) Data values at output

Syntax
\[\varphi ::= x = y \mid \varphi \lor \varphi \]
\[\mid \neg \varphi \mid \exists x. \varphi \]
\[\mid a(x) \mid I \sim O \]

\[\varphi_{con} = \exists x.(x_I \sim O x \land \forall y.(q_f(y) \Rightarrow x_I \sim O y)) \]
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO

Given a formula,
decide if it has a model

$$\psi_1$$
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO

Given a formula, decide if it has a model.
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO
Given a formula, decide if it has a model

Top level

Bottom level

All data comparison appear at bottom level

Each ψ has exactly one free variable whose is involved in all data comparison
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO
Given a formula, decide if it has a model

All data comparison appear at bottom level

Each ψ has exactly one free variable whose is involved in all data comparison

$\varphi = \forall x. \exists y z. x \sim_I y \land y \sim o z \land a(z) \notin \text{Loc-IO-FO}$
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO

Given a formula, decide if it has a model

All data comparison appear at bottom level

Each ψ has exactly one free variable whose involvement in all data comparison

$$\varphi = \forall x. \exists yz. x I\sim I y \land y o\sim_o z \land a(z) \notin \text{Loc-IO-FO}$$

$$\varphi_{con} = \exists x. [x I\sim O x \land \forall y. (q_f(y) \Rightarrow x I\sim O y)] \in \text{Loc-IO-FO}$$
Decidability: Loc-IO-FO

Issue: Satisfiability undecidable for IO-FO

Given a formula, decide if it has a model.

Top level

Bottom level

All data comparison appear at bottom level.

Each ψ has exactly one free variable whose is involve in all data comparison.

$\varphi = \forall x. \exists y z. x I \sim_I y \land y o \sim_o z \land a(z) \notin \text{Loc-IO-FO}$

$\varphi_{con} = \exists x. [x I \sim_O x \land \forall y. (q_f(y) \Rightarrow x I \sim_O y)] \in \text{Loc-IO-FO}$

Is sat for Loc-IO-FO decidable?
Related Works

- Locality in a new concept
Related Works

- Locality in a new concept
- Closest paper:

 On Finite Satisfiability of Two-Variable First-Order Logic with Equivalence Relations
 Kieronski, Emanuel and Tendera, Lidia

 $\text{FO}_2[\Sigma, \sim_1, \sim_2]$
Related Works

- Locality in a new concept
- Closest paper:

On Finite Satisfiability of Two-Variable First-Order Logic with Equivalence Relations
Kieronski, Emanuel and Tendera, Lidia

\[
\text{FO}_2[\Sigma, \sim_1, \sim_2]
\]

- Loc-IO-FO is an extension:
 - Two-variable FO can be made local (Scott NF)
 - The two equivalence relations interact
(Partial) Results

Existential fragment =
DEF: Only existential quantifier on top level
(Partial) Results

Exsitential fragment =
DEF: Only existential quantifier on top level

THM: Sat for the existential fragment is PSAPCE-complet
(Partial) Results

Exsitential fragment:
DEF: Only existential quantifier on top level

THM: Sat for the existential fragment is PSAPCE-complete

Sat for Loc-IO-FO is NEXPTIME-Hard

Lower bound: