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Biological networks

» Understanding a biological process through interactions between its
elements

» Biological networks represents metabolism, gene regulation, signal
transduction, protein interactions, etc
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Formal methods: rigorous and automatic analysis
» Formalizing biological hypotheses and test them in silico

» Infer new properties and observe them in vivo
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Models for biological networks

Interaction Graphs —
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Models for biological networks

Interaction Graphs —
qualitative
Petri Nets

Flux based models

Thomas networks

£ 2

Differential equations, T —

Hybrid systems

A number of formal methods exist for qualitative models but only a few
apply for quantitative models
This work is concerned with this level
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Formal methods and verification

Model-Checking: about proving correctness.
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Formal methods and verification

Model-Checking: about proving correctness.

Model

To prove correctness, we need:

Specifications

» a model, describing the systems behaviors

» a specification language to describe desired (good) and unwanted

(bad) properties
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Formal methods and verification

Model-Checking: about proving correctness.

Model Specifications

To prove correctness, we need:
» a model, describing the systems behaviors

» a specification language to describe desired (good) and unwanted
(bad) properties

Coffee machine example:

» a good property is: if | insert a coin and push ‘coffee’, | get coffee
> a bad one: [ get a tea (and no change)
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Formal methods and verification

Model-Checking: about proving correctness.

Model =7 Specifications

To prove correctness, we need:
» a model, describing the systems behaviors

» a specification language to describe desired (good) and unwanted
(bad) properties

Coffee machine example:

» a good property is: if | insert a coin and push ‘coffee’, | get coffee
> a bad one: [ get a tea (and no change)

» some procedure to decide whether all the behaviors satisfies all the
good properties and none of the bad ones
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Hybrid dynamical systems

Model
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Hybrid dynamical systems

Model
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» Proving anything for hybrid systems is hard,;
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Hybrid dynamical systems

Model Simulation(s)

i=fy(z,p) || (o oo
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» Proving anything for hybrid systems is hard,;

» Simulation, we can do;
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Hybrid dynamical systems

Model Simulation(s) Analysis

i=fy(z,p) || (o oo
a : Prop(z(t, p)) 7 ok

/'ﬂ |
— 7] A,
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x(t, p)

- ok

» Proving anything for hybrid systems is hard,;
» Simulation, we can do;

» So, what can we tell from a (carefully selected) bunch of traces ?
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Hybrid dynamical systems
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Hybrid dynamical systems

Model Simulation(s) Analysis
G —q —

a
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Proving anything for hybrid systems is hard,;

v

Simulation, we can do;

v

v
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A lot depends on the questions one can ask to these simulations...
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Safety verification

Define a set P of parameters p (init. cond. or param), each corresponding to one
traj. and some forbidden region 5. How to verify that all traj. avoid B 7
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Safety verification

Define a set P of parameters p (init. cond. or param), each corresponding to one
traj. and some forbidden region B. How to verify that all traj. avoid B 7

Reachability analysis

> Trying to compute the set
containing all trajectories
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containing all trajectories

> Using simple set representation

» Empty intersection with B proves
safety

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology SFBT 7/37




Safety verification

Define a set P of parameters p (init. cond. or param), each corresponding to one
traj. and some forbidden region B. How to verify that all traj. avoid B 7

Reachability analysis

> Trying to compute the set
containing all trajectories

> Using simple set representation

» Empty intersection with B proves
safety

» Difficulties Spurious results in case of imprecise over-approximation +
difficult for nonlinear system with more than a few continuous variables
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Reachability analysis

Model Reachable set Analysis

T _fq T,p) H ) Safety :

- ?(»,q) € Bad ?

Computing R(P) = {(z, ¢) | Ip3t3n, z(t,p) =z A ¢, = ¢}
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Model Reachable set Analysis
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Reachability analysis

Model Reachable set Analysis
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est. err. <e?
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Computing R(P) = {(z, ¢) | Ip3t3n, z(t,p) =z A ¢, = ¢}

Approach
» Approximate method based on simulation and local sensitivity analysis
» Numerical error estimate to control precision

» Hierarchical refinement of the parameter set
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Approach
» Approximate method based on simulation and local sensitivity analysis
» Numerical error estimate to control precision

» Hierarchical refinement of the parameter set
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Parameter synthesis

Model Reachable Set Analysis
&= fy(z,p) || \/‘10 | Sireté :
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Parameter synthesis

Model Reachable Set Analysis
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Parameter synthesis

Model Reachable Set Analysis

Siireté :

T = €T q0
fa(@, ) || \/ { % #(z, q) € Bad ? ok
@ g > Precision :

err. est. <e?

- ok

» Using local reachability analysis, sub-regions can be certified

> lteratively repeating the process, we can find precise boundaries
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Parameter synthesis

Model Reachable Set Analysis
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First example

A simple model of the acute inflamatory response to a pathogen infection
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First example

A simple model of the acute inflamatory response to a pathogen infection

P Fepm S P

P
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dNa  swR X
W - ﬂnr + R ’LLTLNA7 Initiating Event \//' \ Damage
dD - P =

E = kdnfs(f(NA)) _'U’dD’

d kenf (N, EkemaD Anti-Inflammation
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First example

A simple model of the acute inflamatory response to a pathogen infection

P Fepm S P

P
R U p;) Tl + kP Fpmf(Na) P,
dN4 SnrR
-4 — pnNy,
dt o + R HOA \//v
P
dD (P)

E = kdnfs(f(NA)) _'U’dD’

Three possible outcomes
» Health: pathogen and damage are driven to a low steady state
» Aseptic death: pathogen is eliminated but not tissue damage

» Septic death: tissue damage and pathogen remain high
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Health outcome

Pathogen =

350 400 as0 500

Damage

fime
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Aseptic death outcome

| | | | 1 | | | |
a 50 100 150 200 250 300 350 400 450 500

time.
20 v
15
Damage b .
| ,
0 | i . L i
a 50 100 150 200 250 300 350 400 450 500

time
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Septic death

Pathogen

Damage

Alexandre Donzé, Verimag

outcome

2 | % | | | | | | | |

1] 50 100 150 200 250 ano as0 400 450 500

L
1] 50 100 150 200 250 300 350 400 450 500
time
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Septic death outcome

Pathogen =

o 50 100 150 200 250 ano as0 400 450 500

Damage .

L
1] 50 100 150 200 250 300 350 400 450 500
time

Question
Identify ranges for initial conditions and parameters in the model that lead
to predictable outcomes
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Results using Breach

Breachl(/localjdonze/workspace/PROBLEMS/SimpleAcute)

Files Parameter sets Trajectories and sensitivities  Properties  Select

alive: alw (d[t]<5)

_MNew | _Del | Edic | Check|
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Results using Breach
- Current Farameter sat

Fixed Parameters

ca:0, 15
cl:0
na:0,.08
pil
cinf.0.28
ken:0.04
kend: 48
kedn: 0,35
kmp:0.01
lknd:0.02
knn:0.01
knp:0.1
kpg:0.3
kpm:0.6
kpn:1.8
muc:0.1
mud:0,02
murm: 0,002
rmun: 0,05
munr:d, 12
pinf:20 =

IC

-
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Uneertain Parameters

kpg: 0.3 +/- 0.3 i.e [0,0.6]
ca: 0.15 +/- 0.15i.e [0,0.3]

Add ==

<= Remaove

— Maodif
ptsl/1 i Selected
4] | [y
Value (pts) Uncertainty (epsi)

‘ 0.3 | 0.3

Extract Select As MNew Set|

Refine (mare points)
E
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Results using Breach

alive: alw (d[t]<5)
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Results using Breach

Breachl(/localjdonze/workspace/PROBLEMS/SimpleAcute)

Files Parameter sets Trajectories and sensitivities  Properties  Select

AU

alive: alw (d[t]<5)

_MNew | _Del | Edic | Check|
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Results using Breach

Breachl(/localjdonze/workspace/PROBLEMS/SimpleAcute)

Files Parameter sets Trajectories and sensitivities  Properties  Select

Integrator options [ -]
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Results using Breach

Breachl(/localjdonze/workspace/PROBLEMS/SimpleAcute)

Files Parameter sets Trajectories and sensitivities  Properties  Select

AU

Integrator options

alive: alw (d[t]<5)

_MNew | _Del | Edic | Check|

lca:0.062812  [«] kpg: 0.005625 +/- 0.001875 i.2[a|
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Results using Breach

Pathogen =

150 200 250 300 350 400 as0 500

Damage

fime
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Results using Breach

| | | | 1 | | | |
a 50 100 150 200 250 300 350 400 450 500

time.
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Damage b .
| ,
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Results using Breach

Pathogen =

Damage .

L
1] 50 100 150 200 250 300 350 400 450 500
time
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Motivations

The technique presented so far deals with safety properties

Theory shows that every temporal property on a bounded timed horizon
can be expressed as a safety property
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Motivations

The technique presented so far deals with safety properties

Theory shows that every temporal property on a bounded timed horizon
can be expressed as a safety property

Since life has a bounded time horizon, this should be enough...

However, translating a property of interest into a safety property is not
always trivial nor intuitive, and error prone
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Temporal Logics

A key issue is the appropriate choice of language to describe properties:
» Enough expressivity

» Ease of writing specification
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Temporal Logics

A key issue is the appropriate choice of language to describe properties:
» Enough expressivity

» Ease of writing specification

Temporal logics popularized in 1978 by Amir Pnueli when programs shifted
from simple input-output relations to reactive programs.

A typical reactive program is an operating system:

» a good property is always when the mouse is moved, the cursors
moves

> a bad one: always eventually a blue screen appears and nothing
happens
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Temporal Logics

A key issue is the appropriate choice of language to describe properties:

» Enough expressivity

» Ease of writing specification

Temporal logics popularized in 1978 by Amir Pnueli when programs shifted

from simple input-output relations to reactive programs.

A typical reactive program is an operating system:

» a good property is always when the mouse is moved, the cursors
moves

> a bad one: always eventually a blue screen appears and nothing
happens

A good property such as the one above is a liveness property.
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Temporal logics in a nutshell

Temporal logics allow to specify patterns that timed behaviors of systems may or
may not satisfy. They come in many flavors

The most intuitive is the Linear Temporal Logic (LTL), defined over discrete
sequences of states

It is based on logic operators (=, A, V) and temporal operators : “next”,
“always” (alw), “eventually” (ev) and “until” (/)
Examples:

> © e - satisfies alw ¢
> Y p ) .- satisfies ev ¢
> Y --- satisfies o U P
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Specifications

=7

@ = alw(go = evgs)
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Specifications

= alw(q = evgs)
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Specifications

= alw(q = evgs)
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Specifications

= alw(q = evgs)
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Model

Specifications

& ¢ :=alw(g = evg)
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From discrete to continuous

Temporal logics mostly developped for discrete systems, a natural way to
go is to discretize time and space

However this means that formulas apply to an abstraction of the system,
thus introducing a distance between specification and the “real” system
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From discrete to continuous

Temporal logics mostly developped for discrete systems, a natural way to
go is to discretize time and space

However this means that formulas apply to an abstraction of the system,
thus introducing a distance between specification and the “real” system

Temporal logics adapted to continuous time and space
» spatial constraints are specified on the real-valued quantities

» temporal constraints involve dense-time intervals rather than e.g.
fixed time steps
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Temporal logic formulas: atomic predicates

A predicate is a general inequality constraints on the variables (say A, B, C etc)
and parameters at time ¢

% distance to (A0,BO) is more than 1.
sqrt ((A[t]1-A0)"2 + (B[t]1-BO)"2) > 1.

% the system reached quasi stationnary steady state
abs (ddt{A} [t])+abs(ddt{A}[t])) < 1le-10

% A is sensitive to parameter p

abs (d{A}{p}[t]) > 10*xA[t]l/p

The canonical form of a predicate p is:

p=pu(ép,t) =0
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Temporal logic operators

Metric Interval Temporal Logic (MITL) syntax:

p=p| 0| oNe| o Udap eleviay elalwpgs) ¢

% The concentration of A becomes more than le-6 within 2 s
ev_[0,2] (A[t]> 1le-6)

% A remains low until B is quasi stationary before 10 seconds
(A[t] < 1e-8) until_[0, 10] always ((abs(ddt{B}[t]) < 1e-9))

The result is a query language which is close enough to English formulation.
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Formalizing continuous and hybrid dynamic behaviors

Model Simulation Analysis

o= aq
T —fq z,p) || | *
\/ i alw[qo — €V[o,1]
z(t, p)

Qualitative
“d a stable steady state”, “converges to a limit cycle”

Property ¢ =

Quantitative/transient
“3J an interval of 20 s. when z is above 0.5",
“x is periodic with period < 2s and amplitude > 0.1"
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Formalizing continuous and hybrid dynamic behaviors

Model Simulation Analysis

Qo — @ — Property ¢ =
w—fqﬂfpll " | pery Y p=0
\/ alw[qoﬁev[o 1]

| 7 K
z(t, p)

p <0
- ok

o

Qualitative
“d a stable steady state”, “converges to a limit cycle”

Quantitative/transient
“3J an interval of 20 s. when z is above 0.5",
“x is periodic with period < 2s and amplitude > 0.1"

Robust satisfaction
p = margin of satisfaction or violation for spatial and temporal constraints
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Computing the satisfaction function
For a predicate pu(&,,7) > 0, we have simply p(u,&p, 7) = p1(&p, 7)

For operators: extension of the known correspondance between min — max
operators and boolean operators:

p(_'SO’gp?T) = _p((paépa'r)
plor A2, &p,7) = min(p(p1,&p, 7), p(P2,8p, 7))
p(evia s ©) = max p(p,&p, ')
T'€[r+a, T+b]
p(e1lap) P2,8p,t) = nax b}(min(p(wz,ﬁp, r), sgﬁg} p(#1,€p, 8))

Computing p is somehow tricky but the cost can be roughly linear in the
size of the formula and the length of the simulation (small computional
overhead)
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A Simple Formula

1007

TN Y NCRT

BENVEN ALY

-100 L L L L L L L L L I
1 2 3 4 5 6 7 8 9 10

1007 Satisfaction of ¢ = (ev )

Al &.7)

50

0 s

_50 I I I I L I I I L |
1 2 3 4 5 6 7 8 9 10
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A Simple Formula

100

N N R

o

= ERTRRACIS

~100 ‘ : ‘ : ; ‘
5 6 7 8 9 10

100 xn Satisfaction of ¢ = (ev )

Al &.7)
50
o = Jﬂ

50 ! ! ; . ‘ ‘ : ‘ ‘
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A Simple Formula

100

N N R

o

= ERTRRACIS

100 ‘ : ‘ : ; ‘
5 6 7 8 9 10

100 ,\;n Ty Satisfaction of ¢ = (ev )

ple,8,7)
50
0 -
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A Simple Formula

150

100

o

1:§%ﬁmmu

100 7\;71 D) 3 Satisfaction of ¢ = (ev p)
p(e,8,7)
50
o -
50 i ; L . ! . ‘
1 2 3 4 5 6 7 8 i 1o
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Robust satisfaction and parameters

Example: ¢ = alw [(z(p1) > 2) = evjg,] (y<0.1)]
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Robust satisfaction and parameters
Example: ¢ = alw [(z(p1) >2) = evjg,,) (y<0.1)]

We have the following oracle:

STL Prop. ¢ —)(Oracle
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» Satisfiability: 3p, p(p,p) >07?
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Robust satisfaction and parameters

Example: ¢ = alw [(z(p1) >2) = evjg,,) (y<0.1)]

We have the following oracle:

STL Prop. ¢ —)(Oracle

Model + Robust. Sat. p(¢, p)
Param. p e P —)kSTL Monitor

» Satisfiability: 3p, p(p,p) >07?
» Max robustness: solution of max {p(y,p) | p € P}

» Global robustness volume of {p € P | p(¢,p) > 0}) ?

If n, is large, Quasi-Monte Carlo and global sensitivity analysis (eg.:
Sobol indices)
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Outline

© !llustration with an Enzymatic Reaction Network
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An enzymatic network involved in angiogenesis
Collagen () degradation by matrix metalloproteinase (//{’) and membrane type

1 metalloproteinase (M17) [KP04]
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Rigorous steady state analysis

In [KP04], activation of M{ after 12h “Nearly steady state” for T»(0) between 0
and 200 nM.

Activated MMP2 after a fixed time
100

—— 12 hours
90
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% of activated MMP2
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Initial concentrations of TIMP2 (nM)
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Rigorous steady state analysis

In [KP04], activation of M{ after 12h “Nearly steady state” for T»(0) between 0
and 200 nM. It turned out that steady state was not reached for T5(0) > 20 nM !
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Rigorous steady state analysis

In [KP04], activation of M{ after 12h “Nearly steady state” for T»(0) between 0
and 200 nM. It turned out that steady state was not reached for T5(0) > 20 nM !
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Rigorous steady state analysis

In [KPO4], activation of MJ after 12h “Nearly steady state” for T(0) between 0
and 200 nM. It turned out that steady state was not reached for T5(0) > 20 nM !

Using ¢ = ev alw (|Ma(t)| < e x MJS(0)) we could guarantee the correct plot.
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Formalizing synergism
Collagen can be degraded either by MT; or by M.
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Formalizing synergism
Collagen can be degraded either by MT; or by M;. We defined a notion of
synergism by :

“Before 12h, 90 % of initial collagen is degraded: ev(y 125 (C1(7)/C1(0) < 0.1)
and at least 50 % by M2: ev[0,12h](01§42 (r) > c1¥ T (r)) "
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Synergism, result
Y1 =€ev [Oylzh](Cl(r)/Cl(O) < 0.1)
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. B

M)

n

-

(o2}

o
T

X
o
S
>
J
S
()

Initial concentrations of TIMP2 (

—p1 A 2

20F - At : hi‘iL:
_\(pll/\_‘(‘oz 444_<LH*““L+L+++I+++++I

0 50 100 150 200
Initial concentrations of MT1-MMP (nM)

Quantitative Temporal Logics for Systems Biology




Synergism, global analysis

Varying all other parameters around 10% of nomimal value, and using
quasi-Monte-Carlo sampling, we measure the robustness of the regions found
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Open Model

To extend the model, we introduced production and degradation terms
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Open Model

To extend the model, we introduced production and degradation terms
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Detecting oscillations in M’

We used the formula

P-div = aIW(MQP[t] < M21_:nax)

to guarantee that the oscillation remains in a given range of amplitudes, in
conjunction with

dMy dMy
ev alw (ev[o’ﬁh) <dt2[t] > kh VAN eV[O’Gh) <dt2[t] < kl)))

The first “eventually” removes the transient phase before the oscillations
and the “always” filters damped oscillations

Then requires that the concentration of M2P alternates between periods
when the it strictly increases and periods when it strictly decreases

The formula filters oscillations with a period greater than 12h
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Oscillations Map
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Oscillation, Robustness
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Oscillation, Robustness
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Oscillation, Robustness
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Summary

This work combines classical dynamical systems theory:

» Deterministic models of ordinary differential equations
» Uncertain initial conditions and parameters

» Numerical simulation, local and global sensitivity analysis

with
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Summary

This work combines classical dynamical systems theory:

» Deterministic models of ordinary differential equations
» Uncertain initial conditions and parameters

» Numerical simulation, local and global sensitivity analysis
with

» A convenient query language to specify spatial and temporal
constraints on variables and parameters

» A satisfaction function which computes by how much a simulation
satisfies or violate a property

» Heuristics to synthesize sets of parameters generating trajectories
satisfying a property
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