Investigating the spatial organization of VEGF receptors on the cell membrane

Ádám Halász

Department of Mathematics and MBR Cancer Center
West Virginia University

- In a multicellular organism,
 - Every cell carries the same 'genetic information'
 - Cells exhibit many different phenotypes and are organized into higher structures
- Cells select the appropriate behavior (phenotype) based on external inputs
 - Temperature, pressure, pH,...
 - More importantly: communication from the rest of the organism, in the form of chemical signals
 - Important during embryonic development and beyond

- Chemical signals that influence cell behavior are often "growth factors"
 - EGF (endothelial g.f.), VEGF (vascular e.g.f.)
- The molecule typically binds to a receptor
 - VEGFR is the receptor for VEGF, and VEGF is the ligand for VEGFR
- Ligand binding activates the receptor
 - Change in the level of a chemical activity

- Ligand binding is the first step in a chain of transformations
 - Formation of molecular aggregates
 - Activation (phosphorylation) cascades
 - Transport
- The sequence typically results in a change in the pattern of gene expression and specific behaviors of the target cells

- Many important receptor types are located in the cell membrane
 - Confined to the cell membrane, but move more or less freely parallel to it
 - Extracellular and intracellular domains
- Signaling from receptor tyrosine kinases (RTK) requires dimerized, ligand-bound receptors
 - Receptors can bind ligand and dimerize, not necessarily in this order
 - Ligand binding facilitates dimerization
 - Dimerization + ligand binding induces a conformational change in the intracellular domains

Vascular Endothelial Growth Factor

- Involved in the development of new blood vessels (angiogenesis and vasculogenesis)
- Role in tumor vascularization angiogenic switch
 - Tumors are initially a localized proliferation of anomalous cells, limited by the lack of a dedicated blood supply
 - VEGF is secreted by hypoxic cells
 - Vascular endothelial cells proliferate and migrate toward the VEGF gradient
 - New (albeit irregular) blood vessels are formed
 - Tumor now has its own blood vessels and can grow further
- New drugs target VEGF (avastin)

VEGF signaling

- Several types of VEGF (A-E, PIGF)
 - VFGF-A is the best studied
 - splice variants
- Several RTK receptors
 - Flk-1 (VEGFR-1), KDR (VEGFR-2)
 - Typically present together
 - VEGFR1 has higher affinity
 - VEGFR2 more active in signaling
 - VEGFR1 has a soluble splice variant

VEGF binding

Features of VEGF receptors

- They bind to other membrane proteins (e.g. neuropilin)
- They form oligomers
- Activation of VEGFR-2 leads to changes in the cytoskeleton and cell membrane tension
- VEGF ligand is bivalent
 - VEGF is normally a dimer, acts as a bivalent ligand
 - Two bound VEGF receptors can not form a dimer
 - Phenomenon of high dose inhibition

Formation of blood vessels

Formation of lymphatic vessels

VEGF binding

Bivalent ligand and monovalent receptor

A kinetic model is available for one type of ligand (VEGF-A) and two types of receptor (VEGFR-1 & VEGFR-2)

[MacGabhann and Popel, 2007]

VEGF binding reactions

VEGF binding reactions

- One-receptor model:
 - 6 species, one of them NOT on the cell surface (V)
 - 7 reactions, 2 types of bonds (R-R,V-R)
- Formation of a V-R bond may happen in two distinct ways
 - Between a surface species (R or RR) and a volume species (V)
 - Between two surface species (R + RV)
- Formation of activated complex requires one cross-linking step
 - Typically, this is RV + R \rightarrow RVR
 - Depends on the distribution and mobility of receptors on the surface

$$\begin{split} & \Phi_{1} = k_{c,RR}[R]^{2} - k_{d,RR}[RR] \\ & \Phi_{3} = k_{on,VR}[V] \cdot [RR] - k_{off,VR}[VRR] \\ & \Phi_{5} = \mathbf{k}_{\Delta,RR}[RVR] - k_{d,RR}[\Delta] \\ & \Phi_{7} = k_{on,VR} V \cdot [R] - k_{off,VR}[VR] \\ & \Phi_{2} = k_{c,RR}[R] \cdot [VR] - k_{d,RR}[VRR] \\ & \Phi_{4} = k_{\Delta,VR}[VRR] - k_{off,VR}[\Delta] \\ & \Phi_{6} = k_{c,VR}[R] \cdot [VR] - k_{off,VR}[RVR] \end{split}$$

High dose inhibition

High ligand concentration

Low ligand concentration

- The formation of a second V-R bond requires cross-linking between a ligand-bound receptor (VR) and a free receptor
- If the ligand concentration is high enough, there will be very few free receptors, resulting in few activated complexes

High dose inhibition

- Competition between free and surface-bound ligands (for free receptors)
 - Cross-linking vs. capture rates
- Results in peaked dose response curves
 - Partially overlapping curves for each type of dimer (11,22,12)
- Width of curves increases with the cross-linking rate, i.e.:
 - Higher receptor mobility
 - Receptor concentration
- Figure: activated complexes
 - Peak value (top) time to peak (bottom)
 - Colors: 11,22,12 dimers
 - Dashed line: reduced cross-linking

High dose inhibition

- HDI is not easily observed with VEGF
- Increased cross-linking rates reduce high dose inhibition
- The cross-linking rate is proportional to the collision rate between receptors
 - Concentration of receptors in a fraction of the cell surface increases the cross-linking rate
 - Increased diffusion rate also increases cross-linking
- Spatial organization has a direct impact on the amplitude and time of the signal response

Clustering of receptors

We need to understand the mechanism of receptor clustering

- Possible sources
 - Collective binding: similar to the 3-2 system, where individual molecules bind to each other in a way that does not saturate
 - Alternative explanation: domain structure

Domains on the membrane

- Barriers to movement due to elements of the cytoskeleton
 - 'free' diffusion of membrane proteins (receptors and others) is inhibited
- Induced microdomain structure
 - Most of the time, receptors are confined to individual microdomains
 - Barrier crossings are possible, but rare
 - Larger molecules / aggregates have reduced mobility, thus are less likely to cross the domain boundaries
- Some microdomains may be 'sticky'
 - Higher affinity for certain (or possibly, all) types of receptor

Hypothesis

- Clusters may be induced by the interplay of the domain structure and reduced diffusion of dimers and larger molecular aggregates
- A positive feedback loop:
 - Higher receptor density in a domain increases dimerization and the formation of larger complexes
 - Dimers have reduced mobility, therefore molecules will exit the domain at a lower rate compared to its neighbors
 - Imbalance in exit rates leads to further increase in receptor density
- Can this mechanism generate clustering of a given type of receptor (for instance, VEGFR)?

Simulation methods

Well-mixed SSA (aka Gillespie / CTMC)

States = molecule numbers for each species

Transitions = reaction events

Propensities = reaction rates

Simulation methods

Spatial or kinetic Monte-Carlo

Lattice of locations (discretization of the space)

States = location and chemical species of each particle

Transitions = reaction events or hopping (diffusion)

Propensities = reaction rates and hopping rates

The system of interest

- A patch of the cell membrane (2 x 2 um)
- Domain structure:
 - Lattice (of possible 1-particle locations)
 - Barriers to movement between certain sets of sites
- Previous work:
 - Evidence of emergence of clustering
 - System of many domains is too large for a single simulation
 - Need to simulate several domains to account for the 'extra' receptors

Coarse-grained model

- Spatial coarsegraining
 - Merge the sites of each domain into a single, well-mixed* box

- Gillespie within each box
- Boxes can exchange particles
 - Exit rates obtained from full simulations

Coarse-grained model

- Current work: monomers and dimers
 - Dimers not allowed to exit
- For linear exit rates (for monomers), we can obtain analytical distributions
- Strong evidence of crowding decreasing global exit rates (above 60% occupancy)
- Two possible interpretations of the coarse-grained model:
 - Microdomains
 - Coarse-graining of diffusion (i.e., would become exact as the box size approaches zero)

Summary

- Many signaling pathways rely on ligand-induced receptor dimerization
- Spatial distribution and mobility of receptors may control the efficiency of signaling (especially when HDI is possible)
- Receptor clustering and domain stucture are likely connected
- Main theoretical approach is through simulations
- Simulations need to capture molecular detail and cover a large fraction of the membrane
 - → a coarse grained approach

Acknowledgements

- Collaborators:
 - Jeremy Edwards
 - Bridget Wilson
 - Krishnan Radhakrishnan

Funding: NIH-NCI (K25), MBRCC, WVU

Thank you

